Rabu, 08 Februari 2012

Makalah analisis instrumen


BAB I
PENDAHULUAN
Di tahun 1903 Tswett menemukan teknik kromatografi. Teknik ini bermanfaat dalam penguraian suatu campuran. Definisi kromatografi adalah suatu prosedur pemisahan zat terlarut oleh suatu proses migrasi, diperensial dinamis dalam sistem yang terdiri dari dua fase atau lebih salah satunya bergerak secara berkesinambungan dalam arah tertentu dan didalamnya zat-zat itu menunjukkan perbedaan mobilitas disebabkan adanya perbedaan dalam absorbsi, partisi, kelarutan, tekanan uap, ukuran molekul atau kerapatan muatan ion. Berdasarkan kemasan fase diamnya kromatografi terbagi tiga yaitu kromatografi kertas, kromatografi kolom, dan kromatografi lapisan tipis.
Kromatografi gas sendiri terdiri dari 2 yaitu kromatografi gas cairan dengan mekanisme pemisahan partisi, teknik kolom dan nama alat GLC dan kromatografi gas padat dengan mekanisme pemisahan absorbsi, teknik kolom dan nama alat GSC. Namun GSC jarang digunakan sehingga pada umumnya yang disebut dengan GC saat ini adalah GLC.
Pada prinsipnya pemisahan dalam GC adalah sisebabkan oleh perbedaan dalam kemampuan distribusi analit diantara fase gerak dan fase diam di dalam kolom pada kecepatan dan waktu yang berbeda.
Komponen alat kromatografi gas
Alat GLC atau GC terdiri atas 7 bagian yang pokok seperti pada gambar, yaitu:
1.        Silinder tempat gas pembawa/pengangkut
2.        Pengatur aliran dan pengatur tekanan
3.        Tempat injeksi cuplikan
4.        Kolom
5.        Detector
6.        Pencatat
7.        Terminal untuk 3, 4 dan 5
Bagian-bagian dari kromatografi gas :

1.        Gas pengangkut/pemasok gas
Gas pengangkut (carrier gas) ditempatkan dalam silinder bertekanan tinggi. Biasanya tekanan dari silinder sebesar 150 atm. Tetapi tekanan ini sangat besar untuk digunakan secara Iansung.
Gas pengangkut harus memenuhi persyaratan­ :
a.         Harus inert, tidak bereaksi dengan cuplikan, cuplikan-pe­larut, dan material dalam kolom.
b.         Murni dan mudah diperoleh, serta murah.
c.         Sesuai/cocok untuk detektor.
d.        Harus mengurangi difusi gas.
Gas-gas yang sering dipakai adalah : helium, argon, nitrogen, karbon dioksida dan hidrogen. Gas helium dan argon  sangat baik, tidak mudah terbakar, tetapi sangat mahal. H2 mudah terbakar, sehingga harus berhati-hati dalam pemakaiannya. Kadang-kadang digunakan juga C02.
Pemilihan  gas pengangkut atau pembawa ditentukan oleh ditektor yang digunakan. Tabung gas pembawa dilengkapi dengan pengatur tekanan keluaran dan pengukur tekanan. Sebelum masuk ke kromatografi, (harusnya) ada pengukur kecepatan aliran gas serta sistem penapis molekuler untuk memisahkan air dan pengotor  gas lainnya. Pada dasarnya kecepatan alir gas diatur melalui pengatur tekanan dua tingkat yaitu pengatur kasar (coarse) pada tabung gas dan pengatur halus (fine) pada kromatograf. Tekanan gas masuk ke kromatograf (yaitu tekanan dari tabung gas) diatur pada 10 s.d 50 psi (di atas tekanan ruangan) untuk memungkinkan aliran gas 25 s.d 150 mL/menit pada kolom terpaket dan 1 s.d 25 mL/menit untuk kolom kapiler.

2.     Pengatur aliran dan pengatur tekanan
Ini disebut pengatur atau pengurang Drager. Drager bekerja baik pada 2,5 atm, dan mengalirkan massa aliran dengan tetap. Tekanan lebih pada tempat masuk dari kolom diperlukan un­tuk mengalirkan cuplikan masuk ke dalam kolom. Ini disebabkan, kenyataan lubang akhir dari kolom biasanya mempunyai tekanan atmosfir biasa. Juga oleh kenyataan bahwa suhu kolom adalah tetap, yang diatur oleh thermostat, maka aliran gas tetap yang masuk kolom akan tetap juga.
Demikian juga komponen-komponen akan dielusikan pada waktu yang tetap yang disebut waktu penahanan (the retention time), t­­R. Karena kecepatan gas tetap, maka komponen juga mempunyai volume karakteristik terhadap gas pengangkut = volume penahanan (the retention volume), vr. Kecepatan gas akan mempengaruhi effisiensi kolom. 
Harga-harga yang umum untuk kecepatan gas untuk kolom yang memiliki diameter luar.
1/4" O.D : kecepatan gas 75 ml/min
1/8" O.D : kecepatan gas 25 ml/min.
3.        Tempat injeksi (The injection port)
Dalam pemisahan dengan GLC cuplikan harus dalam ben­tuk fase uap. Gas dan uap dapat dimasukkan secara langsung. Tetapi kebanyakan senyawa organik berbentuk cairan dan padatan. Hingga dengan demikian senyawa yang berbentuk cairan dan padatan pertama-tama harus diuapkan. Ini mem­butuhkan pemanasan sebelum masuk dalam kolom. Panas itu terdapat pada tempat injeksi seperti pada gambar 9. bagan injektor.
Tempat injeksi dari alat GLC selalu dipanaskan. Dalam kebanyakan alat, suhu dari tempat injeksi dapat diatur. Aturan pertama untuk pengaturan suhu ini adalah batiwa suhu tempat injeksi sekitar 50°C lebih tinggi dari titik didih campuran dari cuplikan yang mempunyai titik didih yang paling tinggi. Bila kita tidak mengetahui titik didih komponen dari cuplikan maka kita harus mencoba-coba. Sebagai tindak lanjut suhu dari tempat injeksi dinaikkan. Jika puncak-puncak yang diperoleh lebih baik, ini berarti bahwa suhu percobaan per­tama terlalu rendah. Namun demikian suhu tempat injeksi tidak boleh terlalu tinggi, sebab kemungkinan akan terjadi perubahan karena panas atau penguraian dari senyawa yang akan dianalisa.
http://4.bp.blogspot.com/_dfcYFskH5-g/S3oUo024UMI/AAAAAAAAAUQ/hYh1IsWHXMQ/s320/tempat+injeksi.jpg

Cuplikan dimasukkan ke dalam kolom dengan cara menginjeksikan melalui tempat injeksi. Hal ini dapat dilakukan dengan pertolongan jarum injeksi yang sering disebut "a gas tight syringe".
Perlu diperhatikan bahwa kita tidak boleh menginjeksikan cuplikan terlalu banyak, karena GC sangat sensitif. Biasanya jumlah cuplikan yang diinjeksikan pada waktu kita mengadakan analisa 0,5 -50 ml  gas dan 0,2 - 20 ml untuk cairan seperti pada gambar di bawah.




http://4.bp.blogspot.com/_dfcYFskH5-g/S3oVcXXiyLI/AAAAAAAAAUg/gYujGqOQIQg/s320/tempat+injeksi2.jpg

4.        Kolom
Kolom merupakan jantung dari kromatografi gas. Bentuk dari kolom dapat lurus, bengkok, misal berbentuk V atau W, dan kumparan/spiral. Biasanya bentuk dari kolom adalah kumparan. Kolom selalu merupakan bentuk tabung. Tabung ini dapat terbuat dari :
a.          Tembaga (murah dan mudah diperoleh)
b.         Plastik (teflon), dipakai pada suhu yang tidak terlalu tinggi.
c.          Baja (stainless steel), (mahal)
d.         Alumunium
e.          Gelas
Panjang kolom dapat dari 1 m sampai 3 m. Diameter kolom mempunyai berbagai ukuran, biasanya pengukuran ber­dasarkan diameter dalam dari kolom gelas yaitu antara 0,3 mm hingga 5 min. Kebanyakan kolom yang digunakan berupa stainles steel dengan diameter luar (OD) dari I/S atau 1/4 inch (0,3 atau 0,6 cm). Pada GSC kolom diisi dengan penyerap (ad­sorbent), sedangkan pada GLC kolom diisi dengan "solid sup­port" (padatan pendukung) yang diikat oleh fase diam. `
http://2.bp.blogspot.com/_dfcYFskH5-g/S3oVsyfC9_I/AAAAAAAAAUo/agvhykHahJc/s320/kolom.jpg
5.        Detektor
Detektor berfungsi sebagai pendeteksi komponen-komponen yang telah dipisahkan dari kolom secara terus-menerus, cepat, akurat, dan dapat melakukan pada suhu yang lebih tinggi. Detektor harus dapat dipercaya dan mudah digunakan. Fungsi umumnya mengubah sifat-sifat molekul dari senyawa organik menjadi arus listrik kemudian arus listrik tersebut diteruskan ke rekorder untuk menghasilkan kromatogram. Detektor yang umum digunakan:
a.          Detektor hantaran panas (Thermal Conductivity Detector_ TCD)
b.         Detektor ionisasi nyala (Flame Ionization Detector_ FID)
c.          Detektor penangkap elektron (Electron Capture Detector _ECD)
d.         Detektor fotometrik nyala (Falame Photomertic Detector _FPD)
e.          Detektor nyala alkali
f.          Detektor spektroskopi massa
Detektor yang peka terhadap senyawa organik yang mengandung fosfor adalah FID, ECD, dan FPD. Detektor penangkap elektron (Electron Capture Detector – ECD). Pada penetapan ini, digunakan detektor penangkap elektron. Detektor ini merupakan modifikasi dari FID yaitu pada bagian tabung ionisasi. Dasar dari ECD ialah terjadinya absorbsi e- oleh senyawa yang mempunyai afinitas terhadap e- bebas (senyawa-senyawa elektronegatif). Dalam detektor gas terionisasi oleh partikel yang dihasilkan dari 3H atau 63Ni. Detektor ini mengukur kehilangan sinyal ketika analit terelusi dari kolom kromatografi. Detektor ini peka terhadap senyawa halogen, karbonil terkoyugasi, nitril, nitro, dan organo logam, namun tidak peka terhadap hidrokarbon, ketone, dan alkohol.

6.        Oven kolom
Kolom terletak didalam sebuah oven dalam instrumen. Suhu oven harus diatur dan sedikit dibawah titik didih sampel. Jika suhu diset terlalu tinggi, cairan fase diam bisa teruapkan, juga sedikit sampel akan larut pada suhu tinggi dan bisa mengalir terlalu cepat dalam kolom sehingga menjadi terpisah (Hendayana, 2001).


7.        Rekorder
Rekorder berfungsi sebagai pengubah sinyal dari detektor yang diperkuat melalui elektrometer menjadi bentuk kromatogram. Dari kromatogram yang diperoleh dapat dilakukan analisis kualitatif dan kuantitatif. Analisis kualitatif dengan cara membandingkan waktu retensi sampel dengan standar. Analisis kuantitatif dengan menghitung luas area maupun tinggi dari kromatogram (Hendayana, 2001). Sinyal analitik  yang dihasilkan detektor dikuatkan oleh rangkaian  elektronik     agar bisa diolah  oleh rekorder atau sistem data. Sebuah rekorder bekerja dengan menggerakkan kertas dengan kecepatan tertentu. di atas kertas tersebut dipasangkan pena yang digerakkan oleh sinyal keluaran detektor sehingga posisinya akan berubah-ubah sesuai dengan dinamika keluaran    penguat sinyal detektor. Hasil rekorder adalah sebuah kromatogram berbentuk pik-pik dengan pola yang sesuai dengan kondisi sampel  dan jenis detektor yang digunakan.
Rekorder biasanya dihubungkan dengan sebuah elektrometer yang dihubungkan dengan sirkuit pengintregrasi yang bekerja dengan menghitung jumlah muatan atau jumlah energi listrik yang dihasilkan oleh detektor. Elektrometer akan melengkapi pik-pik kromatogram dengan data luas pik atau tinggi pik lengkap dengan biasnya.
Sistem data merupakan pengembangan lebih lanjut dari rekorder dan elektrometer dengan melanjutkan sinyal dari rekorder dan elektrometer ke sebuah unit pengolah pusat (CPU, Central Procesing Unit).
                                http://madbardo.blogspot.com/2010/02/kromatografi-gas.html
Kromatografi gas adalah cara pemisahan kromatografi menggunakan gas sebagai fasa penggerak. Zat yang dipisahkan dilewatkan dalam kolom yang diisi dengan fasa tidak bergerak yang terdiri dari bahan terbagi halus yang cocok. Gas pembawa mengalir melalui kolom dengan kecepatan tetap, memisahkan zat dalam gas atau cairan, atau dalam bentuk padat pada keadaan normal. Cara ini digunakan untuk percobaan identifikasi dan kemurnian, atau untuk penetapan kadar. Kromatografi Gas ( GC) merupakan jenis kromatografi yang digunakan dalam kimia organik untuk pemisahan dan analisis. GC dapat digunakan untuk menguji kemurnian dari bahan tertentu, atau memisahkan berbagai komponen dari campuran. Dalam beberapa situasi, GC dapat membantu dalam mengidentifikasi sebuah kompleks.
Dalam kromatografi gas, fase yang bergerak (atau “mobile phase”) adalah sebuah operator gas, yang biasanya gas murni seperti helium atau yang tidak reactive seperti gas nitrogen. Stationary atau fasa diam merupakan tahap mikroskopis lapisan cair atau polimer yang mendukung gas murni, di dalam bagian darisistem pipa-pipa kaca atau logam yang disebut kolom. Instrumen yang digunakan untuk melakukan kromatografi gas disebut gas chromatograph (atau “aerograph”, ”gas pemisah”).
Kromatografi gas yang pada prinsipnya sama dengan kromatografi kolom (serta yang lainnya bentuk kromatografi, seperti HPLC, TLC), tapi memiliki beberapa perbedaan penting. Pertama, proses memisahkan compounds dalam campuran dilakukan antara stationary fase cair dan gas fase bergerak, sedangkan pada kromatografi kolom yang seimbang adalah tahap yang solid dan bergerak adalah fase cair. (Jadi, nama lengkap prosedur adalah “kromatografi gas-cair”, merujuk ke ponsel dan stationary tahapan,masing-masing.) Kedua, melalui kolom yang lolos tahap gas terletak di sebuah oven dimana temperatur gas yang dapat dikontrol, sedangkan kromatografi kolom (biasanya) tidak memiliki kontrol seperti suhu. Ketiga, konsentrasi yang majemuk dalam fase gas adalah hanya salah satu fungsi dari tekanan uap dari gas.
Kromatografi gas juga mirip dengan pecahan penyulingan, karena kedua proses memisahkan komponen dari campuran terutama berdasarkan titik didih (atau tekanan uap) perbedaan. Namun, pecahan penyulingan biasanya digunakan untuk memisahkan komponen campuran pada skala besar, sedangkan GC dapat digunakan pada skala yang lebih kecil (yakni microscale).
Umumnya terdiri dari pencadang gas pembawa (injector), tempat penyuntikan zat, kolom terletak dalam thermostat, alat pendeteksi (detector) dan alat pencatat (rekorder) yang ditampilkan pada komputer. Susunan alat tersebut dapat dibuat seperti skema berikut:
  • Cara Pengoperasian Gas Chromatography
Sesudah alat-alat disiapkan, kolom, alat pendeteksi, suhu dan aliran gas pembawa diatur hingga kondisi seperti yang tertera pada masing-masing monografi, suntikkan larutan zat sejumlah yang tertera pada masing-masing monografi atau larutan  pada tempat penyuntikan zat menggunakan alat penyuntik mikro. Pemisahan komponen-komponen dideteksi dan digambarkan dalam kromatografi. Letakkan kurva pada kromatogram dinyakatakn dalam waktu retensi (waktu dari penyuntikan contoh sampai puncak kurva pada kromatogram) atau volume retensi (waktu retensi x kecepatan alir gas pembawa) yang tetap untuk tiap zat pada kondisi yang tetap. Dasar ini digunakan untuk identifikasi. Dari luas daerah puncak urva atau tinggi puncak kurva, komponen zat dapat ditetapkan secara kwantitatif.
  • Cara kalibrasi
Buat satu seri larutan . Setelah itu, suntikan dengan volume sama tiap larutan ke dalam tempat penyuntikan zat. Gambar garis kalibrasi dari kromatogram, dengan berat zat pada sumbu horizontal, dan tinggi puncak kurva atau luas daerah puncak kurva pada sumbu vertical. Buat larutan zat seperti yang tertera pada masing-masing monografi. Dari kromatogram yang diperoleh dengan kondisi yang sama seperti cara memperoleh garis kalibrasi, ukur luas daerah puncak kurva atau tinggi puncak kurva. Hitung jumlah zat menggunakan garis kalibrasi. Dalam cara kerja ini, semua harus dikerjakan dengan kondisi yang betul-betul tetap.
                        http://catatankimia.com/catatan/kromatografi-gas.html
Kromatografi gas-cair (GLC), atau hanya kromatografi gas (GC), merupakan jenis kromatografi yang digunakan dalam kimia organik untuk pemisahan dan analisis. GC dapat digunakan untuk menguji kemurnian dari bahan tertentu, atau memisahkan berbagai komponen dari campuran. Dalam beberapa situasi, GC dapat membantu dalam mengidentifikasi sebuah kompleks.

A.    Latar Belakang
Kromatografi adalah cara pemisahan campuran yang didasarkan atas perbedaan distribusi dari komponen campuran tersebut diantarany dua fase, yaitu fase diam (stationary) dan fase bergerak (mobile)
Fase diam dapat berupa zat padat atau zat cair, sedangkan fase bergerak dapat berupa zat cair atau gas. Dalam kromatografi fase bergerak dapat berupa gas atau zat cair dan fase diam dapat berupa zat padat atau zat cair.

Banyaknya macam-macam kromatografi yang salah satunya adalah kromatografi gas, yang merupaka metode kromatografi pertama yang dikembangkan pada zaman instrumen dan elektronika. Kromatografi gas dapat dipakai untuk setiap campuran dimana semua komponennya mempunyai tekanan uap yang berarti, suhu tekanan uap yang dipakai untuk proses pemisahan. Tekanan uap atau keatsirian memungkinkan komponen menguap dan bergerak bersama-sama dengan fase gerak yang berupa gas.
Kromatografi gas metode yang tepat dan cepat untuk memisahkan campuran yang sangat rumit. Waktu yang dibutuhkan beragam, mulai dari beberapa detik untuk campuran yang sederhana sampai berjam-jam untuk campuran yang mengandung 500-1000 komponen.
Metode ini sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan eter. Analisis minyak mentah dan atsiri dalam buah telah dengan sukses dilakukan dengan tehnik ini.
Efisien pemisahan ditentukan ditentukan dengan besarnya interaksi antara sampel dan cairan, dengan menggunakan fase cair standar yang diketahui efektif untuk berbagai senyawa.

B.     Rumusan Masalah
Makalah ini disusun dengan rumusan masalah sebagai berikut :
  1. Apa yang dimaksud dengan kromatografi gas?
  2. Apa prinsip dari kromatografi gas?
  3. Bagaimana cara kerja kromatografi gas?
  4. Apa kelebihan dan kelemahan kromatografi gas?
C.    Tujuan Makalah
Makalah ini disusun dengan tujuan sebagai berikut :
  1. Untuk mempermudah proses belajar Kimia Fisika terutama Kromatografi
  2. Untuk mengetahui cara pemisahan campuran berdasarkan metode kromatografi gas
  3. Untuk memenuhi tugas mata kuliah Kimia Fisika
D.    Landasan Teori
       Makala ini berasal dari beberapa sumber sebagai berikut:
1.      Study pustaka
Kami mengumpulkan materi dari beberapa sumber buku.
2.      Internet
Kami melakukan pencarian dari beberapa situs yang terkait dengan materi.







BAB II
PEMBAHASAN

A.    Pengertian Kromatografi Gas
Kromatografi Gas adalah proses pemisahan campuran menjadi komponen-komponennya dengan menggunakan gas sebagai fase bergerak yang melewati suatu lapisan serapan (sorben) yang diam.
Kromatografi gas fase geraak dan fase diamnya diantaranya :
      Fase gerak adalah gas dan zat terlarut terpisah sebagai uap. Pemisahan tercapai dengan partisi sampel antara fase gas bergerak
      Fase diam berupa cairan dengan titik didih tinggi (tidak mudah menguap) yang terikat pada zat padat penunjangnya
B.     Prinsip Kromatografi Gas
Kromatografi gas mempunyai prinsip yang sama dengan kromatografi lainnya, tapi memiliki beberapa perbedaan misalnya proses pemisahan campuran dilakukan antara stasionary fase cair dan gas fase gerak dan pada oven temperur gas dapat dikontrol sedangkan pada kromatografi kolom hanya pada tahap fase cair dan temperatur tidak dimiliki.
Secara rinci prinsip kromatografi adalah udara dilewatkan melalui nyala hydrogen (hydrogen flame) selanjutnya uap organik tersebut akan terionisasi dan  menginduksi terjadinya aliran listrik pada detektor, kuantitas aliran listrik sebanding dengan ion.
C.    Rancangan Kromatografi Gas
Kromatografi gas terdiri dari beberapa alat diantaranya :
  1. Fase Mobil (Gas Pembawa)
Fasa mobil (gas pembawa) dipasok dari tanki melalui pengaturan pengurangan tekanan. Kemudian membawa cuplikan langsung ke dalam kolom. Jika hal ini terjadi, cuplikan tidak menyebar sebelum proses pemisahan. Cara ini cocok untuk cuplikan yang mudah menyerap.
Gas pembawa ini harus bersifat inert dan harus sangat murni. Seringkali gas pembawa ini harus disaring untuk menahan debu uap air dan oksigen. Gas sering digunakan adalah N2, H2 He dan Ar.
  1. Sistem Injeksi Sampel
Sampel dimasukkan ke dalam aliran gas, jika sampel berupa cairan harus diencerkan terlebih dahulu dalam bentuk larutan. Injeksi sampel dapat diambil dengan karet silicon ke dalam oven, banyak sampel + 0,1-10 ml.
  1. Kolom
Fungsi kolom merupakan ”jantung” kromatografi gas dimana terjadi pemisahan komponen-komponen cuplikan kolom terbuat dari baja tahan karat, nikel, kaca.
  1. Detektor
Fungsi detektor untuk memonitor gas pembawa yang keluar dari kolom dan merespon perubahan komposisi yang terelusi.
  1. Pencatat (Recorder)
Fungsi recorder sebagai alat untuk mencetak hasil percobaan pada sebuah kertas yang hasilnya disebut kromatogram (kumpulan puncak grafik).

E.     Cara Kerja
Gas pembawa dialirkan dari tangki bertekanan tinggi melalui alat pengatur tekanan yang dapat menentukan kecepatan aliran gas pembawa yang akan  mengalir ke komponen yang lain. Sampel dimasukkan dalam injektor yang dipanaskan agar sampel berubah menjadi gas dan mengalir ke dalam kolom. Pada kolom campuran zat penyusun mengalami pemisahan proses partisi pada fase cair melalui detekor yang mengirimkan signal ke recorder setelah mengalami amplifikasi. Bila sampel berupa cairan dapat dimasukkan dengan syringe, bila berupa gas melalui katup. Sampel masuk kedala injektor mengalir dengan gas pembawa masuk kedalam kolom.
F.     Kelebihan dan Kekurangan Kromatografi Gas
·         Kelebihan
1.      Waktu analisis yang singkat dan ketajaman pemisahan yang tingga
2.      Dapat menggunakan kolom lebih panjang untuk menghasilkan efisiensi pemisahan yang tinggi
3.      Gas mempunyai vikositas yang rendah
4.      Kesetimbangan partisi antara gas dan cairan berlangsung cepat sehingga analisis relatif cepat dan sensitifitasnya tinggi
5.      Pemakaian fase cair memungkinkan kita memilih dari sejumlah fase diam yang sangat beragam yang akan memisahkan hampir segala macam campuran.
·         Kekurangan
1.      Teknik Kromatografi gas terbatas untuk zat yang mudah menguap
2.      Kromatografi gas tidak mudah dipakai untuk memisahkan campuran dalam jumlah besar. Pemisahan pada tingkat mg mudah dilakukan, pemisahan pada tingkat gram mungkin dilakukan, tetapi pemisahan dalam tingkat pon atau ton sukar dilakukan kecuali jika ada metode lain.
3.      Fase gas dibandingkan sebagian besar fase cair tidak bersifat reaktif terhadap fase diam dan zat terlarut.
BAB III
PENUTUP

A.    Kesimpulan
Kromatografi Gas adalah proses pemisahan campuran menjadi komponen-komponennya dengan menggunakan gas sebagai fase bergerak yang melewati suatu lapisan serapan (sorben) yang diam.
B.     Saran
Demikian makalah ini kami susun, tentunya banyak kekurangan baik dalam segi isi atau penyampaiannya. Oleh karena itu, kami mengharap kritik dan saran demi kesempurnaan makalah kami. Semoga makalah ini bermanfaat bagi pembaca.


DAFTAR PUSTAKA
Adnan, Mochamad. 1997. Teknik Kromatografi untuk Analisis Bahan Makanan. Yogyakarta: Andi Offset

Direktorat Jenderal Pengawasan Obat dan Makanan Departemen Kesehatat RI, Farmakope Indonesia, Edisi Ke-3, (Jakarta: 1979), hlm. 784

http://www.blogpribadi.com/2009/11/kromatografi-gas.html

Dra. Fatma Lestari, Msi, PhD. 2009. Bahaya Kimia Sampling dan Pengukuran Kontaminan Kimia di Udara. Jakarta: Buku Kedokteran BCG